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ON THE ALMOST CHEBYSHEVIAN APPROXIMATION TO CERTAIN OPERATORS OF 

THE HEREDITARY THEORY OF ELASTICITY* 

E.S. SINAISKII 

Resolvent hereditary operator generated by an integral, Volterra type operator with 
the Abel /l/ or Rzhanitsyn /2/ kernel is approximated on an arbitrary, finite time 
interval, by a polynomial in fractional powers of a variable with an exponential co- 
factor, using the method developed in /3,4/. The approximation obtained from all 
polynomials of the given type offers, firstly, a smallest error in the defining 
equation, and secondly, it approaches asymptotically with increasing order the 
Chebyshev polynomials of the best uniform approximation to the functiononthe seg- 
ment. The estimation of the approximation obtained shows that the error decreases 
with increasing order of approximation at least as rapidly as the geometrical pro- 
gression. 

Application of the Volterra principle together with the algebra of the resolventoperators 
/1,5/ makes it necessary to construct , at the last stage of solving the problem of hereditary 
theory of elasticity, the heredity operator. This is usually done by numerical methods, 
since the quadratures appearing in the process cannot, as a rule, be expressed in their final 
form in terms of the elementary functions. The known approximations with satisfactorily de- 
terminable errors have asymptotic character, i.e. are suitable when the time variable is suf- 
ficiently large orsufficientlysmall. The intermediate time interval however, over which the 
relaxation and aftereffect processes still continue to develop, are also of interest. 

1. Let R,*(h,o) be an integral, Volterra-type operator 

When h = 0, the function (1.2) becomes a fractional power Rabotnov exponent /l/, at fi =0it 
becomes a Rshanitsyn kernel /2/, at h = p = 0 an Abel kernel and at a = 1 a normal exponent. 
Let us consider the problem of approximating a convolution of the type (1.1) on an arbitrary 
finite time interval [O,t,] 

(1.3) 

We write the function f(8) in the form 

The parameter v 2 0 is arbitrary, while aand pare the same as in (1.3). The approximation 
of a sufficiently smooth function fin this case of f(Q)exp(- ~0)) by a power polynomial, 
represents a traditional and well researched problem of the function approximation theory /6/. 

Therefore the particular manner of representing the function (1.4) should not be regarded 
as an excessively rigid constraint. 

The resolvent operator &* (p, x) is connected with its generating operator &* (p,O) by 
the relations /5/(1 is a unit operator) 
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(1.5) 

Taking into account (1.5) we transform (1.3) into a Volterra equation for the function m (8) 

[I - x&z* (P, (41 u 63 = X%* (II> 0) f (6) (1.6) 

Setting 

IL (9) = 8’ NB (8) (1.7) 

we seek the unknown function B(8) in the form of a polynomial 

According to (1.1) and (1.2) we have 

(1.9) 

i.e. action of the operator R,*(p,O) on the function in question yields the same type function. 

This makes it possible to construct, after substituting (1.4) and (1.8) into (1.6), a system 

of n $ 2 linear algebraic equations in n + 1 unknowns b,, using the method of undetermined 
coefficients. The overdefining does not allow us to obtain an exact solution of (1.6) in the 

form chosen. This can however be attained whrn the equation is "corrected" by introducing in- 

to it a suitably chosen error /3,4/. We replace (1.6) by 

[I - xR,* (p, 0)) B,(F) e”W = %H,* (p, 0)f (0) + ~efiWG,+,(W) (1.10) 

,i+, 
Gn+, (Oa)= 2 g@ (1.11) 

,=" 

where r is an unknown parameter introduced in order to remove the overdefinition mentioned 

above. Assuming that a good approximation can be obtained with help of the polynomial G,,, 
evenly oscillating over the whole interval of the variable change, and we have (T,,O(x) is the 

displaced Chebyshev polynomial /4/I 

n+1 
G,,, (em) -= TO,,, (em) = jg, c:1+‘eaj (1.12) 

T,O (s) = T, (2x - 1) = cos n arccos (2s - 1) (1.13) 

By virtue of (l-4), (1.8), (1.9) and (1.12) we conclude, that equation (1.10) leads to the 

system 

bj = XQi-‘(bj_, + fj_1) + TCj”+l, j = 0, 1, 2, . . .v IZ f 1 (1.14) 

with f-r = b_, = b,+l = Oand j,=Oif j>m. The solution of the system (1.14) is 

bi = &'-'n,j(fj + ~c;+')- fi, i = 0, 1, 2, . ..,Iz (1.15) 

T = - [g @r(aj + Y f 1) fj] rn$ fjr (aj + v + 1) C)+‘]-1 (1.16) 

Ml j-0 

and we denote the polynomials B,,(W) with coefficients (1.15) by B,,“(Oa). 

Theorem 1. Out of all possible polynomials B,(W) of the form (1.8) and of degree not 

exceeding n, the polynomials B,“(W) contribute the least error to the equations (1.6). We 

have the following estimate for any natural n > m (the constants q( 1 and A are indepen- 

dent of n) 
11 R (e) - B, (a”) I( < 2 1 T I< 24-vAq”+1 (II CP 03 II =O~2zI 1 ‘P (0) 1) (1.17) 

q= (E 4. 1/5"--)-I, E = 1 + 2'+al )x i-1, 

A = 1 j X-jr (ai + Y + 1) fj I 

(1.18) 

Proof. Let G,,+,(tP) be any polynomial of the form (1.11) causing an error in (1.10). 

The solution of (1.10) is represented by the polynomial B,(W) (1.8); the coefficients of which 

are obtained from the formulas analogous to (1.15) and (1.16) with cjn" replaced by gj. All 

possible polynomials B,(W) approaching B(8)can be obtained with help of the above method, 
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choosing G,+I(6a) arbitrarily but in such a manner that the denominatorinthe formula for r of 
the form (1.16) does not vanish, i.e. underthe condition 

Since the factor 

All coefficients 

n+1 

lIw=I z X-jr(Uj+V+l)gjI#O (1.19) 

j=O 

of r in (1.10) is undefined, we can assume without loss of generality that 

mar I G,,, (W) 1 = 1 (1.20) 
O<t?<l 

of such a polynomial satisfy the inequalities /6/ 

1 gj ) < 1 Cjn+l 1, j = 0, 1, 2, . . .7 n -t 1 (1.21) 

where cln+l are the coefficients of the Chebyshev polynomial (1.13). Taking into account 
(1.21) and remembering that the product x-jcjn+l retains its sign when j is varied, we obtain 

F\‘ < 1 2 x-jr (aj -t_ Y $ 1) CT 1 z WO 
j=0 

(1.22) 

Thus, out of all polynomials G,,,, (P) satisfying the conditions (1.19) and (1.20) the poly- 
nomialT,+r o(fP)impartsthehighestvalueto thequantity w. Since thenumerator in (1.16) is in- 
dependent of the choice of the polynomial G,,+,(W), we also find that the parameter r attains 
its smallest value in module and hence the smallest maximum of the modulus of the error in 
(1.10). 

The 
the 

Yo 

To obtain the estimate (1.17) we consider the function 

cf, (X) = In r (1 + Y + 5) - In r (1 + a) - (5 - a + V) In a (1.23) 
x>-l-v, v)O,a>l 

function CD(z) is convex in the downward direction due to the logarithmic convexity of 
gamma function /7/. Since Q, (a - y - 1) = @ (a -v) = 0, it follows that the unique mini- 
y0 of this function appears on the interval (a-v - 1, a-v). Choosing an arbitrary y< 
for all x> - 1 -v, we obtain m(x)> y or 

r(i+v+4> evr (1 + a) d-a+x = 6ax, 6 = eT (1 + U) .a- = const 

Setting a = 2 we have (D(X)> y = --In2 /T/for XE(~ -v, 2 -v). Moreover, 6 = 2'-2 and 
hence I?(1 $ v +x)> 2+*+. for all x> -1 -v. Taking into account this inequality together 
with the formulas (1.12) and (1.13) and remembering that Icln+r 1 = (-l)n+j+l~jn+l, we obtain 

n+1 I,+1 
W0 = jz 1 x I-jr (aj + v + 1) 1 c:+lI > 2v-2 ,zo 1 x 1-j 2aj 1 c:+, 1 = 2v-zT,+, (Q, g = 1 + 2l+a 1 x 1-l 

from which, using the representation /6/ 

T,,I (E) = v, {IE + (E2 - l)“P+l + [E - (f2 - Il’q*+l} 

we obtain 
Wo > 2v-v,, (5) > 2v-s IE + (52 - l)‘/z]n+l 

Using the notation of (1.18) and (1.22) we obtain from (1.16) the inequality 

I z I < 2S-VA n+l Q ,q.<1 

while (1.6) and (1.10) yield by virtue of (1.12), (1.7), (1.5) and (1.2), 

B(e)--no(ea)= --z [~O,~(ey+ ~SB3~-,(~;e--)(~~)vT,9+,(sa)ds] 
” 

(1.24) 

(1.25) 

Remembering that /l/ 

~3,-,(x;s)ds=I~I-l; IZ+,(ea)l<l, eE[o,il 
0 

from (1.25) and (1.24) we obtain (l-17), and this proves Theorem 1. 
It is also evident that the following inequality holds for the function u(6) sought: 

11 u(e) - 4evn0 (ey 11 < 11 B (e) - 13,0(w) 11 < 2*-9bp+l (1.26) 

Let e.g. a = 0.3, 5= 0, x= ptP= - 2 . Then according to (1.18) q= 0.237 and in conformity with 
(1.26) we find that increasing the order of approximation by one reduces the error by more 
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than four times. Thus, for the given values of the parameters we find, for the function j(e)= 
i(v== 0, fo= 1, jr== 0 when j>O) using the formula (1.161, that for R = 5,6,7 we have IT~= 7.05.10-4, 
1.69.10-4, 4.04.10-b respectively. For the function f (0) = 8" = 0°J+l.7 (v= 1.7, fl= 1, fl = 0 when ii 1) 
and n=5, we have 17 1 = 1.55 .10-A. This means that a polynomial of the type 

i0 bjW+1.7 

with the coefficients given by the formulas (1.15) approaches uniformly over the whole inter- 

val in question, the convolution xl?,* (0,x)0* with an error not exceeding 3.1 *IO-4. 

2. The Chebyshev or the best uniform approximation of the continuous function B(8) is 

determined, with help of all possible polynomials of degree not higher than n of the form (1.8), 

using the element BI, on which the best approximation to E,,(B) /6/ is attained 

]IB--&v/I =E,(LI), E,(B)-i;!lIR (8)-&(8")I] (2.1) 

The following theorem establishes the relation connecting the approximation obtained with help 

of the above polynomials 0% (W), and E, (B). 

Theorem 2. The polynomials B,,O(W) (1.8) with coefficients determined by the formulas 

(1.15) and (1.16) have the following property on the interval O< 0 < 1: 

II B (0) - B,,O (W) 1) = [1 + 0 (n-a)] E, (B), n -+ 00 (2.2) 

Proof. Performing the substitution SGL =x,ea = y we transform the integral term in 

(1.25) into the integral which can be estimated with help of the lemma proved in /8/. When 

n-+ 00, the integral in question decreases as quantity 0 (n-a), then we obtain from (1.25) 

E, (B) < II B (8) - &zO (6'? I] < 11 + 0 (n-=)1 I ‘c I (2.3) 

At sufficiently large n the sign of the right-hand side of (1.25) is determined by the signof 

T .+l”(@) the extremal values of which, equal to &I, are attained with the sign alternating 

at n $2 consecutive points of the segment [0,1]. Therefore by virtue of the Vallee- Poussin 
theorem /6/ we obtain 

E, (B) > I z I 11 - 0 @=)I, n--t 00 

which yields the estimate 

I z I Q 11 + 0 @=)I E, (B), n ---) 00 (2.4) 

The relations (2.3) and (2.4) together yield (2.2). The theorem implies that as n+ 00, the 

polynomials B,,“(W) tend asymptotically to the element of the best uniform approximation Bnp. 
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